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Chapter 6 Project:  A New Model for Earthquakes 
 
Name _________________________ Name _____________________________ 
 
1.  Background: 
 Faults are approximately planar breaks in the Earth's crust and mantle. Crustal 
blocks moving quickly along a fault produce vibrations or waves, which radiate out in all 
directions away from the fault and fault blocks.  What we experience in an earthquake is 
those vibrations along the surface of the earth.  There are several non-traditional or new-
wave explanations of fault behavior, all based on some form of randomness and 
unpredictability.  This project focuses on one of these theories, known as self-organized 
criticality.   
 
 Faults are considered to be entities that have organized themselves into a critical 
state.  Suppose a tiny amount of movement takes place along the fault.  If the initial 
movement dies out, then a tiny earthquake is produced.  If the initial movement 
propagates and grows and increases, a giant quake is produced. Despite many decades of 
scientific study trying to predict earthquakes, earthquakes have been found to be 
unpredictable; all predictors have failed to work.  For more information about self-
organized criticality in theory and in nature, read How Nature Works by Per Bak (New 
York: Springer-Verlag, 1996). 
 
 This project is designed to generate a population of artificial earthquakes, and to 
compare the model to real earthquakes.  The earthquake generator is called a cellular 
automaton, but we prefer the name bingo box.  The bingo box generates "bingoquakes." 
 
2.  Pre-project preparation 
 Before you begin, make sure that your group has the following papers: 

• “Bingo Box” … 1 copy 
• “Raw Data”  … 1 copy 
• “Group Summary Data” … 2 copies 
• “New Madrid scatterplot” …2 copies 

 
 This project will make use of the random number generator on your calculator.  
Random number generators are not really random: straight out of the box, two calculators 
of the same make will usually produce identical “random” numbers.  For your calculator 
to produce different random numbers than someone else’s, you need to “seed” the 
random number generator with a unique initialization number.  This is quite easy to do.  
On the Homescreen, type in any long number (use at least 10 digits), press the STO→ 
key, select MATH > PRB > 1:rand, and then press ENTER.  See below (but use your 
own number!). 
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 In this project you will generate artificial earthquakes using a 5x5 grid of squares 
called the bingo box, the random number generator on your calculator, a pencil and an 
eraser.  The squares of the bingo box are labeled with integers 1 through 25. As you 
generate the bingoquakes, you will record bingoquake sizes on a separate sheet of paper 
titled Raw Data.  
 
 In the project you will generate a sequence of random integers, each between 1 and 
25.  The random number will tell you which square to mark on the bingo box sheet. To 
generate a random integer from 1 to 25, go to the Homescreen and select MATH > PRB 
> 5:RandInt(.  Then type in 1, 25) and press ENTER.  See below. 
 

 
  
 Now press ENTER a few more times and you will begin generating a sequence of 
random numbers.  Try this now—your random numbers should be different than your 
partner’s. 
 
3.  Procedure for Generating Bingoquakes 
 For this activity, you will need the Bingo Box and Raw Data sheets, and a TI 
calculator.  It is best to have 1 person run the calculator and record on the Raw Data 
sheet, while the other person marks the Bingo Box. 
 
1.  Create a random number between 1 and 25 on the calculator. 
 
2. With the soft pencil, put a tick mark in the corresponding square on the bingo box. 
 
3.  Repeat steps 1 and 2 above until one of your squares has 4 tick marks. This is the start of 
a bingoquake. 
 
4.  Erase the 4 ticks marks and put 1 tick mark in the square above, 1 in the square below, 1 
in the square to the right, and 1 in the square to the left.  If a tick mark lands outside of the 
bingo box, it just disappears. 
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5.  If another square now has 4 tick marks (acquired from the erased square), erase that 
square and distribute the tick marks.  Repeat until all the “4s” are used up (there are no more 
squares with 4 tick marks).   
 
6.  Keep track of how many squares you erase in one sequence (since you last generated a 
random number).  The number of squares you erase in one sequence is the size of your 
bingoquake.  If you erased 3 squares in a series, then your bingoquake is size 3. 
 
7.  Record the size of your bingoquakes on the Raw Data sheet as you create them: your 
first bingoquake, your second bingoquake, your third, and so on.  Stop when you have 
created 50 bingoquakes, UNLESS your last bingoquake was one of your top 3 bingoquakes 
in size.  If so, create another bingoquake; don’t end on a big one. 
 
8.  If a square acquires more than 4 tick marks, just erase 4, and leave the rest. 
 
4.  Compiling your data 
 After generating 50 bingoquakes and recording their sizes on the Raw Data sheet, you 
will need to complete the Group Summary Data sheet.  In the frequency column, record the 
total number of bingoquakes that you generated of each size.  In the reverse cumulative 
frequency column, record the total number of bingoquakes that were of that size or greater.  
For example, the reverse cumulative frequency for size 12 bingoquakes is the total of all 
bingoquakes of size 12 and larger. 
 
 Why compute reverse cumulative frequency, and not just use the actual frequency of 
each bingoquake?  The cumulative frequency produces a nice decreasing sequence of 
numbers, and it smoothes out the frequency distribution.  Also, the plain frequency data 
for some bingoquake sizes may have 0 (zero) events of that size.  That would cause 
problems when taking logarithms of those numbers, because the log of 0 is not defined. 
 
 Submit 1 copy of the Group Summary Data sheet to your instructor and keep 1 copy for 
your group.  Your instructor will total all of the reverse cumulative frequencies from the 
entire class, and return these data to you for use in Part II below.  In the meantime, proceed 
with Part I. 
 
PART I  
 
5.  The Bingo Box as a Critical System 
 One goal of the bingo box was to create a model system that showed criticality; a 
tiny "blip" would produce nothing, and the next identical blip would produce a giant 
event.  Did the bingo box show critical behavior?  How long (in terms of number of 
blips/random numbers) did it take for the bingo box to reach criticality? 
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6.  Foreshocks 
 A foreshock is an earthquake that precedes another earthquake, and is generated by 
movement along the same fault.  With real earthquakes, a foreshock can’t be a small 
earthquake, because every earthquake is preceded by a small earthquake (usually very 
small).  A foreshock has to be substantial in size. 
 
a) With bingoquakes, let’s make the rule that the foreshock has to be at least half as big as 
the main shock.  Using this rule, determine if the largest bingoquakes had foreshocks. Find 
your 5 largest bingoquakes on the Raw Data sheet.  What was the size of the bingoquake 
immediately before those bingoquakes?  Fill in the table with this information. 
 

size of largest 
bingoquake 

size of quake just  
before large bingoquake

  

  

  

  

  

 
 
b)  What percentage of the largest bingoquakes have foreshocks according to the “twice as 
big” rule?  Show work. 
 
 
 
 
 
 
 
c) You’ve analyzed your data for foreshocks, now let’s apply that analysis.  Suppose you 
have a bingoquake of size 3, you’ve recorded that bingoquake, and now you’re ready to 
resume play.  But before you resume play, you must answer the question:  is that size 3 
bingoquake a foreshock to a larger bingoquake, just another bingoquake, or is it the case 
that you can’t tell in advance?  Explain briefly. 
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7. Seismic Gaps 
 A seismic gap is a lack of any substantial earthquakes on a fault before a big earthquake 
on that fault.  Seismic gaps, like foreshocks, are thought to be precursors to big 
earthquakes.  The thinking is that, without any substantial earthquakes, stress continues to 
build until finally a big earthquake occurs.  We can test this theory with the bingo box 
model. 
 
a)  Let’s define a bingogap for our bingo box as at least three very small bingoquakes in a 
row (either size 1 or 2, in any order).  Circle all the bingogaps on your Raw Data sheet.  
How many bingogaps do you have in your bingoquake catalog? 
 
 
 
b)  What is the size of the next bingoquake following a bingogap?  Make a list below.  Do 
bingogaps (as defined above) precede large bingoquakes?  And therefore can bingogaps be 
used to predict large bingoquakes?  Discuss your answer. 
 
 
 
 
 
 
 
c)  Geologists with the Bingoquake Bureau are saying that big bingoquakes should be 
followed by bingogaps!  Explain why you would expect bingogaps after a big bingoquake. 
 
 
 
 
 
 
 
PART II 
 Before beginning this section, obtain from your instructor the Class Summary Data 
sheet.  Enter the size data into L1, and the reverse cumulative frequency data into L2.  Do 
not enter any data if the reverse cumulative frequencies are equal to zero.  No 0’s in L2! 
 
8.   Frequencies of Earthquakes 
a)  On your TI-83/84, create a scatterplot of the (L1, L2)  = (size, reverse cumulative 
frequency) data.  There is no need to worry about setting up window dimensions, just 
correctly set up Plot1 in  STATPLOT, and then choose ZOOM > 9:ZoomStat.  Make a 
“thumbnail” sketch of the scatterplot below.  Label axes. 
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 Real faults show a characteristic pattern of the sizes of earthquakes.  Along a fault, 
there are many small earthquakes, some medium sized earthquakes, and just a few large 
earthquakes.  No matter which fault geologists look at on earth, they always see this same 
pattern of many small, some medium, and a few big earthquakes. 
 
b)  Inspect your scatterplot.  Do bingoquakes show the same characteristic pattern of 
frequency distribution as real earthquakes?  Explain briefly. 
 
 
 
 
 
 
 
 
c)  Can you think of another natural phenomenon, or system with objects or things or 
events, that has many small events/things, some medium sized events/things, and a few 
large sized events/things?  Please describe briefly.  Sorry, but you can’t use auto accidents 
or other phenomena that were mentioned in the Chapter 6 Science in Depth article. 
 
 
 
 
 
  
9.  Power Law Regression 
a)  Using your TI calculator, calculate the best fitting power law regression through the 
(size, reverse cumulative frequency) = (L1, L2) data.  What is the resulting equation?  
What is the correlation coefficient? 
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b)  How well do the data fit a power law relationship?  Explain. 
 
 
 
 
 
10.  Comparison to Computer Generated Results 
 The software program Maple® was programmed to run a 5 x 5 bingo box for 1 
million iterations (hundreds of thousands of bingoquakes) to see what the frequency 
distribution of bingoquakes would look like for a very large set of data; maybe the small 
data set for the class (500-1000 bingoquakes) is not adequate.  This simulation was run 
30 different times, to see whether the results are reproducible, and to see how much 
variation is obtained between simulations. 
 
 The best fitting power law relationship between size and reverse cumulative 
frequency for the Maple bingo box experiment has an average exponent of –3.22.  The 
exponent ranged from –3.42 to –3.05.   How do the Maple numbers compare with the 
class's bingo box result? 
 
 
 
 
11.  Comparison with Real Earthquake Data 
 The attached scatterplot shows annual data for earthquakes in the New Madrid 
seismic zone around Missouri for the period 1816-1983.   The independent variable is the 
logarithm of size (also known as the magnitude), and the dependent variable is the 
logarithm of reverse cumulative frequency.  In other words, the data are graphed with the 
x and y values pre-logged.  To better understand this graph, return to the class 
bingoquake data stored in L1 and L2.  What will the scatterplot of these data look like if 
they are logged?  To find out, go to the Homescreen and calculate the logarithm of list L1 
and store it as list L3.   Then compute the logarithm of L2 and store as L4.  See below. 
(Note: your list values will be slightly different than those displayed below). 
 

 
 
a)  Now make a scatterplot of the (L3, L4) logged data on your calculator. Again, just 
select the correct lists in STATPLOT, then choose ZoomStat.  Make a thumbnail sketch 
below.  Label axes. 
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 We know that when (log(x), log(y)) data appear linear, then the original (x, y) data 
will have a power law shape.  Do the (log(size), log(reverse cumulative frequency)) data 
appear linear?  Do the (size, reverse cumulative frequency) data have a power law shape?   
Discuss. 
 
 
 
 
 
 
b) Now return to the attached scatterplot of the earthquake data from the New Madrid 
seismic zone.   Recall that in the plot of New Madrid earthquakes, the x and y values have 
already been logged.  Will the un-transformed New Madrid data (that is, size and reverse 
cumulative frequency) fit a power law model?  Explain your answer briefly.  
 
 
 
 
 
 
 
 
 
 
  
12.  The Big One 
a)  The New Madrid scatterplot can be used to determine the frequency of occurrence of 
earthquakes of any severity.  Let’s start with a moderately small earthquake.  From the 
graph read off the y value when the magnitude equals 3.0.  Estimate as closely as 
possible. 
 
   log(reverse cumulative frequency) = y = ___________ 
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To find the reverse cumulative frequency, simply take the y value and find 10 to that 
power: 
   reverse cumulative frequency = 10y  =  ___________ 
 
  
Your last answer is the approximate number of earthquakes per year of magnitude 3.0 or 
greater along the New Madrid fault zone.  
 
b) Magnitude 8 earthquakes took place in the New Madrid area in the winter of 1811-
1812.   How often do quakes of that magnitude or greater occur?  Repeat the calculations 
above to find the approximate number of earthquakes per year of magnitude 8.0 or 
greater along the New Madrid fault zone.  Hint: You will need to extend the regression 
line. 
 
 
 
 
 
 
 
 
 
 
 
c)  Express the frequency of New Madrid quakes of magnitude 8.0 or higher in the form: 
 
    1 quake every _________ years. 


