CSC 143 Java

Applications of Trees

Overview

- Applications of traversals
- Syntax trees
- Expression trees
- Postfix expression evaluation
- Infix expression conversion and evaluation

Traversals (Review)

- **Preorder traversal:**
 - "Visit" the (current) node first
 - i.e., do whatever processing is to be done
 - Then, (recursively) do preorder traversal on its children, left to right
- **Postorder traversal:**
 - First, (recursively) do postorder traversals of children, left to right
 - Visit the node itself last
- **Inorder traversal:**
 - (Recursively) do inorder traversals of left child
 - Then visit the (current) node
 - Then (recursively) do inorder traversal of right child

Footnote: pre- and postorder make sense for all trees; inorder only for binary trees

Two Traversals for Printing

```java
public void printInOrder(BTreeNode t) {
    if (t != null) {
        printInOrder(t.left);
        System.out.println(t.data + " ");
        printInOrder(t.right);
    }
}

public void printPreOrder(BTreeNode t) {
    if (t != null) {
        System.out.println(t.data + " ");
        printPreOrder(t.left);
        printPreOrder(t.right);
    }
}
```

Traversing to Delete

- Use a postorder traversal to delete all the nodes in a tree

```java
// delete binary tree with root t
void deleteTree(BTreeNode t) {
    if (t != null) {
        deleteTree(t.left);
        deleteTree(t.right);
        t=null;
    }
}
```

Analysis of Tree Traversal

- How many recursive calls?
 - Two for every node in tree (plus one initial call);
 - \(O(N)\) in total for \(N\) nodes
- How much time per call?
 - Depends on complexity \(O(V)\) of the visit
 - For printing and many other types of traversal, visit is \(O(1)\) time
- Multiply to get total
 - \(O(N) \times O(V) = O(N \times V)\)
- Does tree shape matter?
Syntax and Expression Trees

- Computer programs have a hierarchical structure
- All statements have a fixed form
- Statements can be ordered and nested almost arbitrarily (nested if-then-else)
- Can use a structure known as a syntax tree to represent programs
 - Trees capture hierarchical structure

A Syntax Tree

Consider the Java statement:

```java
if ( a == b + 1 ) x = y; else ...
```

Syntax Trees

- An entire .java file can be viewed as a tree
- Compilers build syntax trees when compiling programs
 - Can apply simple rules to check program for syntax errors
 - Easier for compiler to translate and optimize than text file
 - Process of building a syntax tree is called parsing

Binary Expression Trees

- A binary expression tree is a syntax tree used to represent meaning of a mathematical expression
- Normal mathematical operators like +, -, *, /
- Structure of tree defines result
- Easy to evaluate expressions from their binary expression tree (as we shall see)

Example

```
5 * 3 + (9 - 1) / 4 - 1
```

Infix, Prefix, Postfix Expressions

- Infix: binary operators are written between operands
- Postfix: operator after the operands
- Prefix: operator before the operands
Expression Tree Magic

- Traverse in **postorder** to get **postfix** notation!
 - $5 \times 3 - 9 + 1 - 4 + 1 -$
- Traverse in **preorder** to get **prefix** notation
 - $- + \times 5 3 \div - 9 1 4 1$
- Traverse in **inorder** to get **infix** notation
 - $5 \times 3 + 9 - 1 \div 4 - 1$
 - Note that **infix** operator precedence may be wrong! Correction:
 - add parentheses at every step
 - $(((5 \times 3) + ((9 - 1) \div 4)) - 1)$

More on Postfix

- $3 4 5 * -$ means same as $(3 \times 4) -$
 - **infix**: $3 - (4 \times 5)$
- Parentheses aren’t needed!
 - When you see an operator:
 - both operands must already be available.
 - Stop and apply the operator, then go on
 - **Precedence is implicit**
 - Do the operators in the order found, period!
- Practice converting and evaluating:
 - $1 + 7 \times 2 -$
 - $((3 + (5 \div 3) \times 6)) - 4$

Why Postfix?

- Does not require parentheses!
- Some calculators make you type in that way
- Easy to process by a program
 - simple and efficient algorithm

Postfix Evaluation Algorithm

- Create an empty stack
 - Will hold tokens
- Read in the next “token” (operator or data)
- If data, push it on the data stack
 - If (binary) operator:
 - call it “op”
 - Pop off the most recent data (B) and next most recent (A) from the stack
 - Perform the operation $R = A \ op \ B$
 - Push R on the stack
- Continue with the next token
 - When finished, the answer is the stack top.
- Simple, but works like magic!

Check Your Understanding

- According to the algorithm, $3 5 -$ means
 - $3 - 5$? or $5 - 3$?
- If data stack is ever empty when data is needed for an operation:
 - Then the original expression was bad
 - Why? Give an example
- If the data stack is not empty after the last token has been processed and the stack popped:
 - Then the original expression was bad
 - Why? Give an example

Example: $3 4 5 -$

- Draw the stack at each step!
- Read 3. Push it (because it’s data)
- Read 4. Push it.
- Read 5. Push it.
- Read -. Pop 5, pop 4, perform 4 - 5. Push- 1
- Read *. Pop- 1 pop 3, perform 3 * -. 1 Push- 3
- No more tokens. Final answer: pop the- 3
 - note that stack is now empty
Algorithm: converting in- to post-
- Create an empty stack to hold operators
- Main loop:
 - Read a token
 - If operand, output it immediately
 - If '(', push the '(' on stack
 - If operator
 hold it aside temporarily
 if stack top is an op of => precedence: pop and output
 repeat untill '{' is on top or stack is empty
 push the new operator
 - If ')', pop and output until '(' has been popped
 - Repeat until end of input
 - Pop and output rest of stack

Magic Trick
- Suppose you had a bunch of numbers, and inserted them all into an initially empty BST.
- Then suppose you traversed the tree in order.
- The nodes would be visited in order of their values. In other words, the numbers would come out sorted!
- Try it!
- This algorithm is called TreeSort

Tree Sort
- \(O(N \log N)\) most of the time
 - Time to build the tree, plus time to traverse
 - When is it not \(O(N \log N)\)?
- Trivial to program if you already have a binary search tree class
- Note: not an "in place" sort
 - The original tree is left in as-is, plus there is a new sorted list of equal size
 - Is this good or bad?
 - Is this true or not true of other sorts we know?

Preview of UW CSE326/373: Balanced Search Trees
- Cost of basic binary search operations
 - Dependent on tree height
 - \(O(\log N)\) for \(N\) nodes if tree is balanced
 - \(O(N)\) if tree is very unbalanced
- Can we ensure tree is always balanced?
 - Yes, insert and delete can be modified to keep the tree pretty well balanced
 - Several algorithms and data structures exist
 - Details are complicated
 - Results in \(O(\log N)\) "find" operations, even in worst case