Course Outline – Seattle Central Community College

Course Prefix & No.: MATH 238
Title: Differential Equations
Credits: 5

Division: Science & Math
Program/Department: Mathematics

Max Class Size: 32
Course length: 11 weeks
Prerequisite(s): MATH& 153 w/ 2.0 or better within the last 3 years.

Total Contact Hours: 55
Mode(s) of Delivery:
- [] On campus self-contained
- [x] Correspondence
- [] Tele-course
- [] Online instruction
- [] Hybrid (e.g., online and on campus)
- [] Other (please describe):

Lecture: 55
(11 h. = 1 cr.)
Lab:
Clinical:
Other:
(unsupervised; 33 hrs. = 1 cr.)

Course Description:
This course is a first introduction to the solution of ordinary differential equations and elementary systems of differential equations. Analytic, graphical, and numerical solution methods are employed.

Learning Outcomes:
As a result of taking this course, students will be able to:
- Solve differential equations of orders one and two algebraically, numerically, and graphically.
- Solve certain systems of equations.
- Determine equilibria stability and bifurcation values of autonomous ODES and systems.
- Set up differential equations to model applied problems.
- Use technology effectively (a C.A.S., a numerical solver, and calculators) in analyzing qualitative and quantitative behaviors.

Program/Degree Outcomes:
This course addresses the following program or degree outcomes:
- Develop and use skills in critical thinking, quantitative analysis
- Develop and use skills for in-person interactions with individuals and within groups.
- Use methods and modes of inquiry specific to mathematics
- Demonstrate effective oral and written communication, teamwork and collaboration in mathematical settings
- Demonstrate academic honesty and ethical behavior

Topical Outline and/or Major Divisions:
This course covers the following topics:
- Solving first order equations analytically: separable, linear, exact, Bernoulli, homogeneous, power series. Use change of variable to rewrite equations in solvable form. Applications to mechanics, population, and mixing problems.
- Solving systems of equations: analytic solutions to linear, autonomous, 2 by 2 systems of d.e.’s; qualitative solution methods applied to linear and nonlinear 2 by 2 systems. Applications of species interactions including predator-prey, competition, cooperation.
- Solving second order equations analytically: linear, homogeneous, undetermined coefficients, power series, concepts of linear independence and a fundamental set of solutions. Applications of unforced (damped and undamped) and forced harmonic oscillators (resonance) found in spring-mass systems and electrical circuits.
- Qualitative methods: slope fields, Euler's method, phase line and plane analysis, bifurcations.
- Introduction to Laplace transforms.

<table>
<thead>
<tr>
<th>Distribution Area</th>
<th>Natural World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Information</td>
<td>Transfers to some institutions as a 300-level course.</td>
</tr>
<tr>
<td>CAC Use Only Special Designation(s)</td>
<td>☑ QSR ☐ IS ☐ C ☐ GS ☐ US ☐ None</td>
</tr>
</tbody>
</table>

Outline Prepared by: Bryan Johns
Date: 4/14/2011