Business Mathematics I

SOLUTIONS TO STUDY GUIDE FOR MIDTERM 2

The following questions explore parts of the material that will be covered on Test 2.

Problems 1, 2, and 3 refer to a sum of $20,000 which is deposited in a savings account that pays an annual rate of 4.9%.

1. What is the effective annual yield on the account, if interest is compounded continuously? Give your answer as a percentage, rounded to 2 decimal places, e.g., x.xx%.

Solution. \(y = e^r - 1 = e^{0.049} - 1 \approx 0.0502 = 5.02\% \)

2. What is the future value of the account after 5 years, if interest is compounded continuously?

Solution. \(F = P \cdot e^{rt} = 20,000 \cdot e^{0.049 \cdot 5} \approx 25,552.43 \)

3. What is the future value of the account after 5 years, if interest is compounded quarterly?

Solution. \(F = P \cdot \left(1 + \frac{r}{n}\right)^{nt} = 20,000 \cdot \left(1 + \frac{0.049}{4}\right)^{4 \cdot 5} = 25,514.42 \)

4. If interest is compounded continuously at 6.5%, what is the present value of a future payment of $50,000 that is to be made 8 years from now?

Solution. \(P = \frac{F}{e^{-rt}} = 50,000 \cdot e^{-0.065 \cdot 8} \approx 29,726.03 \)

5. Fill in the **Frequency**, **Relative Frequency**, and **Percentage** columns, as they would be done by the *Histogram* and other functions in *Excel*. Do this manually, not with the help of *Excel*.

Data	Bins	Frequency	Relative Frequency	Percentage	
Problems 6 and 7 refer to the following plot of ratios for 600 weekly closes on a stock.

Ratios of Closing Prices

<table>
<thead>
<tr>
<th>ratio</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.83</td>
<td>0%</td>
</tr>
<tr>
<td>0.86</td>
<td>5%</td>
</tr>
<tr>
<td>0.89</td>
<td>10%</td>
</tr>
<tr>
<td>0.92</td>
<td>15%</td>
</tr>
<tr>
<td>0.95</td>
<td>20%</td>
</tr>
<tr>
<td>0.98</td>
<td>25%</td>
</tr>
<tr>
<td>1.01</td>
<td>30%</td>
</tr>
<tr>
<td>1.04</td>
<td>35%</td>
</tr>
<tr>
<td>1.07</td>
<td>30%</td>
</tr>
<tr>
<td>1.10</td>
<td>25%</td>
</tr>
<tr>
<td>1.13</td>
<td>20%</td>
</tr>
<tr>
<td>1.16</td>
<td>15%</td>
</tr>
<tr>
<td>1.19</td>
<td>10%</td>
</tr>
</tbody>
</table>

6. Approximately how many ratios were between 0.995 and 1.025?

Solution. Approximately $0.31 \times 600 = 186$ ratios.

7. Assuming that these ratios are a random sample for the random variable R, which gives the weekly ratio of closes, estimate $P(R \geq 1.025)$.

Solution.

$$P(R \geq 1.025) \equiv \frac{\text{number of ratios} \geq 1.025}{600}$$

$$\equiv \frac{0.22 + 0.08 + 0.03 + 0.01}{600} = 0.34$$

8. Let X be the random variable giving the value of the S and P 500 Index on July 1, 2001. Is X finite or continuous? Is f_X a p.m.f. or a p.d.f.?

Solution. X is a continuous random variable, with a p.d.f.
9. Let \(Y \) be the random variable giving the number of months in the year 2001 when the S and P 500 Index has a monthly high above 1,600. Is \(Y \) finite or continuous? Is \(f_Y \) a p.m.f. or a p.d.f.?

Solution. \(Y \) is a finite random variable, with a p.m.f.

10. For each graph, select the statement that is most likely to be correct.

 a. The function is a **probability mass function** for a **finite** random variable.
 b. The function is a **probability density function** for a **continuous** random variable.
 c. The function is a **cumulative distribution function** for a **finite** random variable.
 d. The function is a **cumulative distribution function** for a **continuous** random variable.
 e. None of the above.

Hint: look carefully at the numbers on the axes.

(i)

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0 & 0.2 & 0.4 & 0.6 & \hline
1 & \hline
2 & \hline
3 & \hline
\end{array}
\]

\[\text{x}\] a. \[____\] b. \[____\] c. \[____\] d. \[____\] e. \[____\]

(ii)

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0 & \hline
0.2 & \hline
0.4 & \hline
0.6 & \hline
0.8 & \hline
1.0 & \hline
1.2 & \hline
\end{array}
\]

\[____\] a. \[____\] b. \[____\] c. \[____\] d. \[____\] e. \[____\]

(iii)

\[
\begin{array}{cccccc}
-0.5 & 0 & 0.5 & 1 & 1.5 & \hline
0 & \hline
0.2 & \hline
0.4 & \hline
0.6 & \hline
0.8 & \hline
1.0 & \hline
1.2 & \hline
\end{array}
\]

\[____\] a. \[____\] b. \[____\] c. \[____\] d. \[____\] e. \[____\]
10. A random variable W has the following values and probabilities.

<table>
<thead>
<tr>
<th>w</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(W = w)$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(i) The c.d.f., F_W has $F_W(8) = _0.9_.$

(ii) The p.m.f., f_W has $f_W(8) = _0.3_.$

(iii) The c.d.f., F_W has $F_W(10) = _0.9_.$

(iv) The p.m.f., f_W has $f_W(10) = _0_.$

11. A courier van that runs between two of your company's facilities encounters 5 traffic signals along its route. These operate independently, with each signal having a probability of 0.55 that the van has to stop. Let X be the random variable giving the number of signals at which the van must stop on a randomly selected trip.

(i) What kind of random variable is X?

(ii) Use Excel to generate a table containing all possible values of X and the corresponding values of f_X and F_X, rounded to 4 decimal places.

(iii) On average, at how many of the signals can the courier van expect to stop? Use the most efficient method for computing your answer.

Solution. (i) X is a finite random variable, having a binomial distribution, with parameters $n = 5$ and $p = 0.55$.
(ii) **BINOMDIST** was used to create the following table.

<table>
<thead>
<tr>
<th>Binomial X</th>
<th>$f_X(x)$</th>
<th>$F_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0185</td>
<td>0.0185</td>
</tr>
<tr>
<td>1</td>
<td>0.1128</td>
<td>0.1312</td>
</tr>
<tr>
<td>2</td>
<td>0.2757</td>
<td>0.4069</td>
</tr>
<tr>
<td>3</td>
<td>0.3369</td>
<td>0.7438</td>
</tr>
<tr>
<td>4</td>
<td>0.2059</td>
<td>0.9497</td>
</tr>
<tr>
<td>5</td>
<td>0.0503</td>
<td>1.0000</td>
</tr>
<tr>
<td>Sum</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

(iii) On average, the courier van can expect to stop at $E(X)$ signals. $E(X) = np = 5 \cdot 0.55 = 2.75$ stops.

12. T is a uniform continuous random variable on the interval [0, 5].

(i) The **p.d.f.**, f_T, has $f_T(3) = \frac{1}{0.2}$. $P(T = 3) = \frac{0}{0}$.

13. Let X be an exponential random variable, whose **p.d.f.** has the form $f_X(x) = 0.2 e^{-0.2x}$, for $x \geq 0$.

(i) Find a formula for the **c.d.f.** of X.

(ii) Use your result from Part i to compute $P(3.7 \leq X \leq 6.7)$, rounded to 4 decimal places.

(iii) $\mu_X =$?

Solution. (i) For $x \geq 0$, the **p.d.f.** has the form $f_X(x) = \frac{1}{\alpha} e^{-x/\alpha}$ with $\alpha = 5$. Hence, X is exponential with parameter $\alpha = 5$, and the following **c.d.f.**

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1-e^{-x/5} & \text{if } 0 \leq x \end{cases}$$

(ii) $P(3.7 \leq X \leq 6.7) = F_X(6.7) - F_X(3.7) = (1 - e^{-6.7/5}) - (1 - e^{-3.7/5}) = e^{-3.7/5} - e^{-6.7/5} \approx 0.477113916 - 0.261845669 = 0.215268247 \approx 0.2153$, rounded to 4 decimal places.

(iii) $\mu_X = \alpha = 5$.

14. For each of the following functions, tell were it is located in **Excel**, and describe its use.

(i) **VLOOKUP**

(ii) **IF**

(iii) **RAND**

(iv) **HISTOGRAM**

(v) **RANDBETWEEN**

(vi) **SORT**
Solution. (i) VLOOKUP is found in the Lookup and reference functions. It is used to find the number in a given column, based upon the value in another column.

(ii) IF is found in Logical functions. It is used to choose between two expressions, depending upon the truth of a given statement.

(iii) RAND is found in the Math & trig functions. It is used to generate an observation of a continuous random variable which is uniform on [0, 1].

(iv) HISTOGRAM is found under Tools/Data Analysis. It is used to count the number of data points which lie within specified ranges.

(v) RANDBETWEEN is found in the Math & trig functions. It is used to generate random integers between given limits.

(vi) SORT is found under Data. It is used to sort data points by columns or rows.

Problems 15, 16, and 17 refer to a 10 week European call option on ABC stock with a strike price of $90.

15. A few of the historical adjusted weekly closing prices are shown below.

<table>
<thead>
<tr>
<th>Week of</th>
<th>Adjusted Close</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 15, 1999</td>
<td>$86.89</td>
<td>1.0109</td>
</tr>
<tr>
<td>Nov. 8, 1999</td>
<td>$85.95</td>
<td>1.0198</td>
</tr>
<tr>
<td>Nov. 1, 1999</td>
<td>$84.28</td>
<td>0.9800</td>
</tr>
<tr>
<td>Oct. 25, 1999</td>
<td>$86.00</td>
<td>1.0126</td>
</tr>
<tr>
<td>Oct. 18, 1999</td>
<td>$84.93</td>
<td></td>
</tr>
</tbody>
</table>

Fill in the column with ratios of weekly closes and compute the mean ratio for the given period.

Solution. The mean ratio is \((1.0109 + 1.0198 + 0.9800 + 1.0126)/4 = 1.0058\)

16. Suppose that the only possible closing prices of ABC, at the end of the option, are $84, $91, and $93. If the three closing values are all equally likely, what is the expected value of C, the closing value? What does \(E(C)\) tell you about the future value of the option?

Solution. \(E(C) = \$84(1/3) + \$91(1/3) + \$93(1/3) = \$89.33\). This number does not tell us anything about the future value of the option.

17. Under the conditions in Problem 14, what is the expected future value of the option?

Solution. Let \(F\) give the future value of the option. \(E(F) = \$0(1/3) + \$1(1/3) + \$3(1/3) = \$1.33\).