Chordates \rightarrow Vertebrates

From basal Deuterostomes
Outline

• Origins of Deuterostomes & Chordates
• Characteristics of Deuterostomes & Chordates
• Themes in Chordate evolution?
• Vertebrate adaptations?
• How are Vertebrates related?
• Who are the contemporary Vertebrates?
Deuterostome ancestors & characters

What kind of traits are these?
Figure 33-7 Biological Science, 2/e
© 2005 Pearson Prentice Hall, Inc.
Synapomorphies of Chordata

1. Pharyngeal gill pouches
 • Modified in adults of terrestrial lineages; become gills in aquatic lineages

2. Notochord (gelatinous; cartilaginous)
 • Organizes body
 • Forms somites: blocks of tissue that produce limbs, segmented skeletal muscle, ribs

3. Dorsal, hollow, nerve chord

4. Muscular, post-anal tail
Chordate precursors

- Echinoderms
 - Sea stars; brittle stars
- Hemichordates
 - Acorn worms

Echino Hemi Uro Cephalo Verts

Hemichordata (acorn worms; a phylum closely related to chordates)

Adult
Water flow
Pharyngeal gill slits
Overhead drawing: Generalized chordate features
Themes in evolution of Chordates

• Increasing cephalization
• Gaining teeth, jaws, and diversifying them.
• Vertebrate structures from invertebrate bodies
 - **Skeletons** (endo), cephalization of DHNC, limbs
• **Morphological innovations** that allowed invasion of land
Fossils mark some major innovations

- Bony exoskeleton
- Jaws and teeth
- Limbs capable of moving on land
- Amniotic egg

First vertebrates: Cambrian
First cartilaginous fishes: Ordovician
First fish with extensive bone: Silurian
First bony fish with jaws: Devonian
First tetrapods: Carboniferous (Mississippian)
First amniotes: Permian

542 mya to 251 mya
Major innovations

• From Cartilage
 - Scattered, unorganized cells surrounded by proteins & polysaccharides; **Avascular**
 - Stiff, flexible

• To Bone (~ 480 Mya) **Exoskeleton 1st**
 - *Organized* cells surrounded by proteins & calcium crystals; **Vascularized**
 - Rigid; stiff in compression, relatively flexible under tension
Major innovations

• From **Pharyngeal gill slits**
 - For acquiring O_2 & some filter feeding
 - One gill arch becomes modified ->

• **To Jaws (~ 430 Mya)**
 - Now we can bite! Goodbye suspension feeding
 - Eat big stuff
 • Not just floating rice grains
 - Eat attached stuff
Pharyngeal gill slits -> Jaws

- **Vertebrates**
 - Gill arch evolved into **jaws**
 - Same shape and movement
 - Jaws & arches (and **not** neighboring structures) derive from **neural crest cells**
 - Attached muscles originate from same population of embryonic cells
 - Ray-finned fishes modified arches further
Major innovations

• From **Fins**
 - Great for propulsion or steering in water

• To **4 limbs (~ 375 Mya)**
 - Tetrapods
 - Allowed access to terrestrial environments
Locomotion

• Evidence for transition from Fish
 - Lungfish
 - Structural evidence
 • Many fossil intermediates
 - Molecular genetic evidence
 • In both limbs & fins, the same patterning genes are active at same time.
Major innovations

- From unbound gelatinous egg
 - Fine if bathed in water
- To Amniotic egg (~ 355 Mya) Amniotes
 - Watertight shell (or case) enclosing food supply, water supply & waste repository
 - Provides freedom from aquatic environments
 - Now you can live anywhere, because egg (membrane or shell) resists desiccation
Amniotic egg

- Early Tetrapods = Amphibian-like eggs
- Contemporary Amniotes have encased, membrane-bound eggs
 - Watertight
 - Albumen layer: water supply
 - Amnion: cushions embryo
 - Yolk sac: nutrients
 - Allantois: waste container
 - Chorion: SA for gas exchange
Major innovations

- From smooth, moist epithelia
 - Good for exchanging H₂O and O₂ and waste in water
- To hard, **keratinized** epithelia
 - Necessary for preventing desiccation
Clicker Q

What challenges did Vertebrates face in moving from an aquatic to a terrestrial environment?

1. Resisting desiccation
2. Exchanging gases in a new media (air vs. water)
3. Moving through an environment dominated by gravity
4. All of the above
Vertebrate diversity
Vertebrate Diversity

- Feeding
 - Jaws
- Locomotion
 - Tetrapod limb
- Reproduction
 - Amniotic egg
Feeding

- Echinoderms
 - Suspension feeding
 - Deposit feeding
 - Harvesting

- Basal Vertebrates - jawless
 - Deposit feeding
 - Ectoparasites
Locomotion

• Aquatic Vertebrates
 - Fins & lateral undulation

• Lungfish
 - Limb-like fins: short distance excursions
 - Lungs: additional O_2
 - Burrow in mud: survive droughts

• Tetrapods
 - Fully functional limbs
Reproduction

1. Amniotic egg
2. Placenta
3. Parental care
Placenta

- Placenta “replaces” yolk sac & allantois
 - Highly vascularized for nutrient & gas exchange
- Probably represents a trade-off
 - Invest lots in few offspring
 - Invest little in many offspring
Parental care

- Widespread in vertebrates
 - Any energy output that increases survival of offspring
- Highly developed & consistent in birds & mammals
 - Feeding; warming; protecting
 - Lactation: offspring totally dependent on mother for nutrition
 - Placentation & Lactation represent highest energy provisioning & output of any animal
“Agnathans”

- 110 species
- **Hagfish**
 - Scavengers and predators
 - Carcass and buried prey
- **Lampreys**
 - Ectoparasites
 - Attach, rasp, drink
Chondricthyes

- 840 species
- Cartilagenous skeletons
- Mostly marine
- **Feeding**: Mostly predators

Sharks
- **Movement**: Lateral undulation
- **Active** predators

Skates, Rays
- **Locomotion**: pectoral fin flapping
- **Feeding**: *Sit & wait.*
 - Electrocute/stun prey
Actinopterygii

- Ray-finned fishes
- 24,000 species
- Huge diversity
 - Feeding
 - Locomotion
 - Reproduction
Sarcopterygii

- 8 species
- **Actinista** (coelocanth)
 - Omnivorous; fish & plant matter
- **Dipnoi** (Lungfish)
- Limbs made of distinguishable bones & muscle
- Lungs in Dipnoi
- **Movement**: Lateral undulation
- **Repro**: Oviparous
Amphibia

- 4800 species
- **Frogs & toads; Salamanders; Caecilians**
- **Feeding:**
 - Carnivorous adults
 - Mostly sit & wait
- **Movement:**
 - Lateral undulation; hopping; burrowing
- **Repro:**
 - Oviparous
 - External fert. (F&T)
 - Internal fert. (Sallys, Caecilians)
Mammalia

- **Monotremes (3)**
 - Oviparous; nutritious sweat

- **Marsupials (275)**
 - Viviparous; prolonged lactation

- **Placentals (4300)**
 - Viviparous; prolonged gestation

- **Movement:**
 - Swim, walk, glide, fly, brachiate, burrow, hop

- **Feeding:**
 - Carnivores, herbivores, omnivores
Testudinia

- 271 species
- **Feeding:**
 - Herbivores; carnivores
- **Reproduction:**
 - Oviparous; Temp-dependent sex determination; no care
- **Movement:**
 - Swim; walk; burrow
- **Turtles**
 - Marine & freshwater
- **Tortoises**
 - Terrestrial
Archosauria

- **Repro**: Oviparous; extensive parental care
- **Crocodiles, alligators, caimans**
 - 21 species
 - **Locomotion**: Walk, gallop, lateral undulation
 - **Feeding**: predators
- **Birds**
 - 9700 species
 - **Locomotion**: Fly, run, swim
 - **Feeding**: omnivores, herbivores (nectar, seeds), predators
Lepidosauria

- Tuataras, Squamata ("lizards" & snakes)
- 6800 species
- Many limb reductions
- Feeding:
 - Predators
 - sit & wait & active
 - Constriction, venom injection, twist & shear
 - Herbivores
- Movement: Lateral undulation
- Repro: oviparous, ovoviviparous; some parthenogenesis in whiptails